Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback
نویسندگان
چکیده
Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.
منابع مشابه
Review of Differentiation and Proliferation of Primordial Germ Cells in Culture
Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...
متن کاملAn investigation of primordial germ cell development in embryo and larvae of Huso huso
In sturgeons, Primordial Germ Cells originate from the vegetal pole of the egg. They migrate toward genital ridges during developmental stages and finally differentiate into gametes (the only cells that transmit genetic information). In this study, the cells were isolated from the place of migration of primordial germ cells in Huso huso’s larvae during two stages before and after absorption of ...
متن کاملVariation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study
INTRODUCTION It is important to understand the drivers leading to adaptive phenotypic diversity within and among species. The threespine stickleback (Gasterosteus aculeatus) has become a model system for investigating the genetic and phenotypic responses during repeated colonization of fresh waters from the original marine habitat. During the freshwater colonization process there has been a rec...
متن کاملGenetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback.
Explaining the presence of conspicuous female ornaments that take the form of male-typical traits has been a longstanding challenge in evolutionary biology. Such female ornaments have been proposed to evolve via both adaptive and nonadaptive evolutionary processes. Determining the genetic underpinnings of female ornaments is important for elucidating the mechanisms by which such female traits a...
متن کاملLandscape Modeling of Threespine Stickleback Occurrence in Small Southeast Alaska Lakes
Although threespine stickleback (Gasterosteus aculeatus L.) are known to inhabit a wide range of habitats, their distribution in lakes across Southeast Alaska is not known. Threespine stickleback are an important prey item for many consumers in freshwater ecosystems. Additionally, isolated populations may be genetically unique and thus important from a conservation perspective. This study focus...
متن کامل